
CS166 Handout 11
Spring 2016 May 12, 2016

Problem Set Five: Randomized Data Structures

This final problem set of the quarter explores randomized data structures and the mathematical tech-
niques useful in analyzing them. By the time you've finished this problem set, you'll have a much
deeper appreciation for just how clever and powerful these data structures can be!

Due Thursday, May 19 at the start of lecture.

Problem One: The Tug-of-War Sketch (10 Points)
In lecture, we saw that if a is a vector, then ||a||₂ is the L₂-norm of a, which is defined as

‖a‖2=√∑
i=1

n

ai
2

A related quantity is the second frequency moment of a, which is defined as

F 2=∑
i=1

n

a i
2

The second frequency moment of a frequency vector is useful for getting a sense of how skewed the dis-
tribution is, since it's quite sensitive to large values. A common application of second frequency moments
is measuring the difference between two different data streams – by computing the second frequency mo-
ment of the difference between the underlying frequency vectors, you can get a good estimate for how dis-
similar the data are.

In this problem, you'll work through the development and analysis of a data structure called the tug-of-
war sketch that estimates F₂ for a data stream. As you'll see, the data structure strongly resembles a count
sketch, and its analysis touches on many of the techniques from our analysis of linear probing.

The goal of this problem is to design a data structure supporting these two operations:

• ds.increment(x), which increments the frequency of the element x, and

• ds.estimate(), which returns an estimate of F₂.

As with the count[-min] sketch, we'll start with a very simple data structure for solving this problem,
then replicate it in a way gives it a 1 – δ probability of estimating F₂ to within a factor of (1 ± ε). The
initial data structure is so simple that it's almost comical. Let ℋ be a k-independent family of hash func-
tions from some set 𝒰 to {-1, +1}. (We'll choose k later based on how the analysis goes). Our data struc-
ture will simply be an integer counter C, initially 0, paired with hash function h chosen uniformly at ran-
dom from ℋ. To perform ds.increment(x), we add h(x) to C. To perform ds.estimate(), we return C2.
That's it. (Notice the similarity to the count sketch.)

i. Prove that if ℋ is a family of hash functions that's at least 2-independent, then E[C2] = F₂.

As per our normal approach, let's see if we can use some concentration inequalities to get a bound on the
accuracy of our estimation. Suppose we are ultimately interested in getting an estimate that's within a
(1 ± ε) factor of the true answer (that is, we'd like to have (1 – ε) ≤ C2 ≤ (1 + ε), or, equivalently, that
|C2 – F₂| ≤ εF₂). Since we're trying to bound a two-sided error, Markov's inequality isn't likely to be use-
ful, but we can probably make some progress using Chebyshev's inequality.

ii. Prove that if ℋ is a family of hash functions that's at least 4-independent, then Var[C2] ≤ 2F₂2.

iii. Use Chebyshev's inequality to bound the probability that |C2 – F₂| ≥ εF₂, then explain why the
bound you got isn't a particularly useful one.

We're now at a point where we have an unbiased estimator for F₂, but one whose variance is too large to
be useful. To address this, we'll use a time-honored tradition for reducing the variance: run a bunch of
copies of this estimator in parallel and take the average.

Let's run w independent copies of this estimator and denote the counters as C₁, C₂, …, Cw and the (inde-
pendently, uniformly-randomly-chosen) hash functions as h₁, h₂, …, hw. As our estimate, we'll return

D =
1
w ∑

i=1

w

C i
2

In other words, we'll simply return the average of all the estimates.

iv. Prove that E[D] = F₂ and that Var[D] ≤ 2F₂2 / w. This shows we now have a new, unbiased esti-
mator for F₂ with lower variance than our original estimator.

v. Show that there is a way to set w = O(ε-2) such that the estimate D satisfies |D – F₂| ≤ εF₂ with
probability at least p for some fixed universal constant ½ < p ≤ 1.

We now have a estimator for F₂ whose precision can be controlled by a parameter ε. All that's left to do
now is to find a way to ensure that we're accurate with high probability.

vi. Show that there's a way to run O(log δ-1) copies of the above data structure such that a final esti-
mate of F₂ can be produced that, with probability 1 – δ, estimates F₂ to within a factor of (1 ± ε).
This final data structure is the tug-of-war sketch.

Your final data structure only needs space for O(ε-2 log δ-1) hash functions and counters, which makes it
extremely space efficient!

The technique covered in parts (iv), (v), and (vi) of this question are often referred to as the median-of-
means method. It turns out it's actually a pretty general technique – given any randomized data structure
that's an unbiased estimator of some quantity, you can run several copies of it in parallel in the way you
described to get a tightly controlled bound.

Problem Two: Hashing in the Real World (10 Points)
You've now seen a number of different approaches for building hash tables and their mathematical analy-
sis. How well do these hash tables hold up in practice? In this problem, you'll find out.

The starter files for this programming assignment are available at

/usr/class/cs166/assignments/ps5

Your task is to implement the following flavors of hash table:

• Chained hashing: The standard hash table usually taught in CS106B/X, CS107, and CS161.
Chances are you've implemented one of these before, so hopefully this will just be a warm up.

• Second-choice hashing: This is a variation on chained hashing. You'll maintain two hash functions
h₁ and h₂. When inserting a key x, compute h₁(x) and h₂(x) and insert x into whichever bucket is
less loaded. To do a lookup, search for x both in the bucket given by h₁(x) and h₂(x).

• Linear probing: The open-addressing scheme described in class.

• Robin Hood hashing: A modification on linear probing described in lecture. When storing ele-
ments in the table, annotate each with its intended bucket. When doing an insertion, start off as
normal, but if you ever find that the slot you're currently scanning is occupied and the element
there is closer to its intended location, place the newly-inserted element at that location, displacing
the older element, then continue onward with the scan from the current position to place the dis-
placed element. You may end up displacing several elements in a single insertion.

• Cuckoo hashing: The dynamic perfect hashing scheme described in class.

We've provided a test harness that will test your hash tables with different load factors (you don't need to
worry about resizing the tables – we'll always size them appropriately for you) and different choices of
hash functions. Once you've finished implementing your solutions, crank up the optimization level to the
maximum, run our driver code, and submit a (brief) writeup answering the following questions:

• The theory predicts that linear probing and cuckoo hashing degenerate rapidly beyond a certain
load factor. How accurate is that in practice?

• How does second-choice hashing compare to chained hashing across the range of load factors?
Why do you think that is?

• How does Robin Hood hashing compare to linear probing across the range of load factors? Why
do you think that is?

• In theory, cuckoo hashing requires much stronger classes of hash functions than the other types of
hash tables we've covered. Do you see this in practice?

As always, to receive full credit for this assignment, your code should compile cleanly without warnings
on the corn machines and should not have any memory leaks.

Some things to keep in mind:

• Our driver code will provide the number of buckets to use as a parameter to the constructors of
your hash table. We've chosen these numbers specifically to test the performance of your hash ta-
ble under different load factors. As a result, you should not resize your hash tables dynamically.
Our starter files will always leave at least a few slots empty in your tables, so, for example, you
don't need to handle the case where you have a linear probing hash table that's at 100% capacity.

• The file comments for each of the hash tables contain information about specific implementation
requirements. For example, we'd like you to implement deletions in Robin Hood hashing using
backwards-shift deletion and deletions in linear probing tables using tombstone deletion.

• Hash functions are represented using the HashFunction type. HashFunction essentially acts like
a function pointer, so if you have a variable of type HashFunction named h, you can invoke it by
calling h(key). The hash values are distributed over the range [0, 231), so you will need to mod
hash codes by your table sizes.

• You can assume that the keys you're hashing will be nonnegative integers. Feel free to reserve neg-
ative integers as sentinel values.

• In Robin-Hood hashing, remember that you can – and should – terminate searches early in many
cases by looking at where the currently-scanned element is relative to where it should be.

• You are welcome to use the C++ standard library types if you'd like, though the standard hash
containers (std::unordered_map, std::unordered_set, etc.) are, understandably, off-limits.

